Supercomputing illuminates detailed nuclear structure
Peer-Reviewed Publication
Updates every hour. Last Updated: 15-Jun-2025 18:09 ET (15-Jun-2025 22:09 GMT/UTC)
Using the Frontier supercomputer at the Department of Energy’s Oak Ridge National Laboratory, researchers have developed a new technique that predicts nuclear properties in record detail. The study revealed how the structure of a nucleus relates to the force that holds it together. This understanding could advance efforts in quantum physics and across a variety of sectors, from to energy production to national security.
By editing the polymers of discarded plastics, chemists at the Department of Energy’s Oak Ridge National Laboratory have found a way to generate new macromolecules with more valuable properties than those of the starting material. Upcycling may help remedy the roughly 450 million tons of plastic discarded worldwide annually, of which only 9% gets recycled; the rest is incinerated or winds up in landfills, oceans or elsewhere.
Researchers at the Department of Energy’s Oak Ridge National Laboratory joined forces with EPB of Chattanooga and the University of Tennessee at Chattanooga to demonstrate the first transmission of an entangled quantum signal using multiple wavelength channels and automatic polarization stabilization over a commercial network with no downtime.
The successful trial of this innovation marks another step toward the eventual creation of a quantum internet that could prove to be more capable and secure than existing networks.
A team of scientists with two Department of Energy Bioenergy Research Centers — the Center for Bioenergy Innovation, or CBI, at Oak Ridge National Laboratory and the Center for Advanced Bioenergy and Bioproducts Innovation, or CABBI, at the University of Illinois Urbana-Champaign — identified a gene in a poplar tree that enhances photosynthesis and can boost tree height by about 30% in the field and by as much as 200% in the greenhouse.