Coupled aeroelastic analysis of a panel in supersonic flow with add-on acoustic black hole
Tsinghua University PressPeer-Reviewed Publication
The add-on acoustic black hole (AABH), as a vibration reduction device with light weight, rich modal density, and high damping characteristics, has been extensively studied in the vibro-acoustic control of structures. However, there has been no research on application of AABH in the control of the typically aeroelastic instability phenomenon of a panel in supersonic flow. Meanwhile, the prediction of aerodynamic response and flutter boundary of panel structures with attached AABH presents a complex challenge, requiring a sophisticated numerical strategy. Therefore, establishment of a numerical method for coupled aeroelastic analysis of a panel in supersonic flow with AABH and the performance of AABH in suppression of the panel's aeroelastic instability is of great significance.The add-on acoustic black hole (AABH), as a vibration reduction device with light weight, rich modal density, and high damping characteristics, has been extensively studied in the vibro-acoustic control of structures. However, there has been no research on application of AABH in the control of the typically aeroelastic instability phenomenon of a panel in supersonic flow. Meanwhile, the prediction of aerodynamic response and flutter boundary of panel structures with attached AABH presents a complex challenge, requiring a sophisticated numerical strategy. Therefore, establishment of a numerical method for coupled aeroelastic analysis of a panel in supersonic flow with AABH and the performance of AABH in suppression of the panel's aeroelastic instability is of great significance.
- Journal
- Chinese Journal of Aeronautics