New study reveals how water pathways control nitrogen pollution from farms to cities
Peer-Reviewed Publication
Updates every hour. Last Updated: 23-Oct-2025 10:11 ET (23-Oct-2025 14:11 GMT/UTC)
Researchers have reviewed how meta-devices can miniaturize and integrate quantum photonic systems, enabling advanced applications in quantum imaging, communication, and computing. These ultra-compact devices promise to make quantum technology more practical and scalable.
In a significant advancement in sustainable chemistry, researchers are exploring cutting-edge developments in carbonaceous-supported catalysts for converting CO2 into cyclic carbonates. The study, titled "C4C Recent Developments: Carbonaceous-Supported Catalysts for CO2 Conversion into Cyclic Carbonates," is led by Prof. Nader Ghaffari Khaligh from the Nanotechnology and Catalysis Research Center at the Institute for Advanced Studies (IAS), Universiti Malaya in Kuala Lumpur, Malaysia. This research offers a detailed exploration of innovative catalysts that promise to transform CO2 into valuable chemicals, driving progress in sustainable chemistry.
Deep-blue light-emitting diodes (LEDs) that satisfy the Rec.2020 color standard are essential for next-generation ultra-high-definition displays. To this end, researchers in China have developed a hydrobromic acid-assisted ligand passivation strategy that markedly improves the performance of CsPbBr3 nanoplatelet-based LEDs. This advance enables efficient deep-blue electroluminescence with color coordinates of (0.136, 0.046), fully meeting the Rec.2020 specification. The work highlights the strong potential of perovskite materials for the commercialization of next-generation ultra-high-definition display technologies.
Transition metal carbides are prized for their exceptional hardness and stability under extreme conditions, but they are notoriously brittle. This intrinsic trade-off between hardness and toughness has long hindered their application in demanding fields. A research team has developed a novel strategy that uses nitrogen doping to fundamentally re-engineer the microstructure of (Ti, Zr)C ceramics. This approach unleashes a powerful toughening mechanism during a process called spinodal decomposition, resulting in a remarkable simultaneous increase of approximately 40% in hardness and 50% in toughness. This breakthrough provides a new blueprint for designing next-generation ceramics with superior reliability.
Breast cancer is increasingly affecting younger women globally, often before the screening guidelines recommend testing age. Young patients with breast cancer have a worse prognosis than older women.
Early screening through AI-enhanced mammography and high-throughput sequencing-powered genetic tests can identify high-risk individuals, offering a critical time frame for prevention and intervention.