Self-densified super-strong wood: a sustainable alternative to traditional structural materials
Peer-Reviewed Publication
Updates every hour. Last Updated: 24-Jun-2025 03:10 ET (24-Jun-2025 07:10 GMT/UTC)
Peking University, March 19, 2025: A research team led by Professor Sun Qing-Feng in colloboration with Professor He Lin’s research group from Beijing Normal University has achieved orbital hybridization in graphene-based artificial atoms for the first time. Their findings, entitled “Orbital hybridization in graphene-based artificial atoms” was published in Nature (DOI: 10.1038/s41586-025-08620-z). This work marks a significant milestone in the field of quantum physics and materials science, bridging the gap between artificial and real atomic behaviors
In a paper published in National Science Review, the cubic-phase α-MoC1−x nanoparticles were incorporated into a carbon matrix and coupled with cobalt phthalocyanine molecules for the co-reduction of CO2 and H2O. During the reaction process, a dense hydrogen bond network was formed on the catalyst surface induced by rearranged water molecules, thereby enhancing water dissociation, accelerating proton transfer, and improving the overall performance of CO2RR.
A research paper just published in Science China Life Sciences reports a gastric-adaptive hydrogen polysulfide microreactor (GAPSR), which can release a large amount of hydrogen polysulfide (H2Sn, n≥2) and inactivate H. pylori glucose-6-phosphate dehydrogenase (G6PDH) by interfering with electron transfer from glucose-6-phosphate (G6P) to nicotinamide adenine dinucleotide phosphate (NADP+). This discovery provides a new scheme for the treatment of Helicobacter pylori infection.
This comprehensive review analyzes cutting-edge tools and technologies in modern pharmaceutical research, focusing on artificial intelligence, multi-omics technologies, and experimental methods. The study highlights how computational methods enhance drug discovery efficiency, while omics technologies provide systematic frameworks for investigating drug mechanisms. The integration of these advanced approaches has enabled more diverse and personalized treatment strategies, though challenges remain in drug development complexity, cost-effectiveness, and operational feasibility.