Everyday repellent, global pollutant
Peer-Reviewed Publication
Updates every hour. Last Updated: 21-Dec-2025 20:11 ET (22-Dec-2025 01:11 GMT/UTC)
Developing elite fruit cultivars typically requires long breeding cycles, especially in perennial woody species.
Organoid research has rapidly advanced as a transformative platform for modeling development, disease, and regeneration, yet inconsistent reporting has hindered reproducibility and limited data integration across laboratories. The newly introduced Minimum Information about Organoid Research (MIOR) framework establishes a comprehensive, modular reporting system designed to address these challenges. MIOR defines clear requirements for project metadata, biological sources, organoid characterization, culture conditions, engineering strategies, and assay parameters. By distinguishing essential from recommended fields, the framework balances rigor with practical usability. MIOR aims to turn organoid datasets into reusable, comparable resources and strengthen the reliability and translational potential of organoid-based research.
Multi-element co-doping has become an effective approach to optimize thin-film quality and enhance device power conversion efficiency (PCE) in studies related to CZTSSe solar cells. However, most of co-doping studies have primarily concentrated on the isolated effects of individual doping elements on CZTSSe thin films, often neglecting the potential interactions between co-doping elements. This study investigates the interactions between Li and Ag in CZTSSe thin films, revealing the underlying mechanism by which Ag incorporation enhances the Li tolerance. These findings provide valuable insights and guidance for future studies on co-doping strategies.
The atomically precise [Au13Ag12(PPh2Py)10Cl8]PF6 supported on activated carbon (AC) were utilized as a catalyst for epoxide cycloaddition with CO2. The reaction shows high efficiency and wide substrate tolerance. Mechanistic study reveals the that structural flexibility at the waist Ag-Cl bonds dominates the coordination of epoxide, and then the electrophilic attack of CO2 and the cyclization enables the catalytic reaction. This study implies that the structural flexibility of the surface blocks might be an advantage of metal nanoclusters in catalysis.
Prolonged exposure to hot weather and direct sunlight can lead to heat exhaustion and skin irritation, which reduces the productivity of outdoor workers and increases health risks. This study has developed a polylactic acid/boron nitride nanosheet composite fabric by electrospinning. Being selectively modified for hydrophilicity, the fabric has combined passive radiative cooling, thermal conductivity and directional sweat wicking to improve thermal comfort in outdoor environments. Compared to conventional cotton fabrics, the composite fibric exhibits excellent solar reflectance (96%) and infrared heat emissivity (93%), along with high thermal conductivity (0.38 W·m-1 K-1). In outdoor experiments, the composite fabric lowers skin temperature by 2.0 °C under direct sunlight during the day and by 3.8 °C at night relative to bare skin. The composite fabric features a directional perspiration function and an impressive sweat evaporation rate of 1.67 g·h⁻¹, which can efficiently transport sweat and heat to the fiber membrane surface to keep the skin dry and cool. This work should advance human thermal management strategies for high-temperature outdoor environments.
The electrocatalytic CO2 reduction reaction (CO2RR) serves as an effective approach to convert CO2 into high-value chemicals and facilitate carbon cycling. Among various products, ethylene (C2H4), a crucial industrial feedstock, demonstrates substantial market demand and economic significance. Copper (Cu)-based catalysts exhibit remarkable advantages in CO2RR to C2H4 conversion due to their unique electronic structure and optimal *CO adsorption capacity.
Concurrently, the membrane electrode assembly (MEA) design featuring an electrolyte-free cathode effectively addresses mass transfer limitations, minimizes ohmic losses, and enhances interfacial efficiency, thereby significantly boosting current density and product selectivity. The integration of Cu-based catalysts with MEA technology thus emerges as a highly promising solution for industrial-scale CO2RR to C2H4 production.Seedless fruit production, known as parthenocarpy, offers major commercial advantages by improving eating quality, reducing labor costs, and stabilizing yields under poor pollination conditions.