New study finds online therapy sessions can effectively treat depression and anxiety
Peer-Reviewed Publication
Updates every hour. Last Updated: 24-Dec-2025 20:11 ET (25-Dec-2025 01:11 GMT/UTC)
Tele-cognitive behavioural therapy (t-CBT) is the most studied remote therapy, and evidence supports its efficacy in treating depression and anxiety symptoms. To compare the effectiveness of tele-interpersonal psychotherapy (t-IPT) to that of t-CBT, we hypothesise that t-IPT is as effective as t-CBT.
Carbon dioxide energy storage (CES) is an emerging compressed gas energy storage technology which offers high energy storage efficiency, flexibility in location, and low overall costs. This study focuses on a CES system that incorporates a high-temperature graded heat storage structure, utilizing multiple heat exchange working fluids. Unlike traditional CES systems that utilize a single thermal storage at low to medium temperatures, this system significantly optimizes the heat transfer performance of the system, thereby improving its cycle efficiency. Under typical design conditions, the round-trip efficiency of the system is found to be 76.4%, with an output power of 334 kW/(kg·s−1) per unit mass flow rate, through mathematical modeling. Performance analysis shows that increasing the total pressure ratio, reducing the heat transfer temperature difference, improving the heat exchanger efficiency, and lowering the ambient temperature can enhance cycle efficiency. Additionally, this paper proposes a universal and theoretical CES thermodynamic intrinsic cycle construction method and performance prediction evaluation method for CES systems, providing a more standardized and accurate approach for optimizing CES system design.
Ion migration capability and interfacial chemistry of solid polymer electrolytes (SPEs) in all-solid-state sodium metal batteries (ASSMBs) are closely related to the Na+ coordination environment. Herein, an electrostatic engineering strategy is proposed to regulate the Na+ coordinated structure by employing a fluorinated metal–organic framework as an electron-rich model. Theoretical and experimental results revealed that the abundant electron-rich F sites can accelerate the disassociation of Na-salt through electrostatic attraction to release free Na+, while forcing anions into a Na+ coordination structure though electrostatic repulsion to weaken the Na+ coordination with polymer, thus promoting rapid Na+ transport. The optimized anion-rich weak solvation structure fosters a stable inorganic-dominated solid–electrolyte interphase, significantly enhancing the interfacial stability toward Na anode. Consequently, the Na/Na symmetric cell delivered stable Na plating/stripping over 2500 h at 0.1 mA cm−2. Impressively, the assembled ASSMBs demonstrated stable performance of over 2000 cycles even under high rate of 2 C with capacity retention nearly 100%, surpassing most reported ASSMBs using various solid-state electrolytes. This work provides a new avenue for regulating the Na+ coordination structure of SPEs by exploration of electrostatic effect engineering to achieve high-performance all-solid-state alkali metal batteries.
Electrocatalytic nitrate-to-ammonia conversion offers dual environmental and sustainable synthesis benefits, but achieving high efficiency with low-cost catalysts remains a major challenge. This review focuses on cobalt-based electrocatalysts, emphasizing their structural engineering for enhanced the performance of electrocatalytic nitrate reduction reaction (NO3RR) through dimensional control, compositional tuning, and coordination microenvironment modulation. Notably, by critically analyzing metallic cobalt, cobalt alloys, cobalt compounds, cobalt single atom and molecular catalyst configurations, we firstly establish correlations between atomic-scale structural features and catalytic performance in a coordination environment perspective for NO3RR, including the dynamic reconstruction during operation and its impact on active site. Synergizing experimental breakthroughs with computational modeling, we decode mechanisms underlying competitive hydrogen evolution suppression, intermediate adsorption-energy optimization, and durability enhancement in complex aqueous environments. The development of cobalt-based catalysts was summarized and prospected, and the emerging opportunities of machine learning in accelerating the research and development of high-performance catalysts and the configuration of series reactors for scalable nitrate-to-ammonia systems were also introduced. Bridging surface science and applications, it outlines a framework for designing multifunctional electrocatalysts to restore nitrogen cycle balance sustainably.
To enhance the electrochemical performance of lithium-ion battery anodes with higher silicon content, it is essential to engineer their microstructure for better lithium-ion transport and mitigated volume change as well. Herein, we suggest an effective approach to control the micropore structure of silicon oxide (SiOx)/artificial graphite (AG) composite electrodes using a perforated current collector. The electrode features a unique pore structure, where alternating high-porosity domains and low-porosity domains markedly reduce overall electrode resistance, leading to a 20% improvement in rate capability at a 5C-rate discharge condition. Using microstructure-resolved modeling and simulations, we demonstrate that the patterned micropore structure enhances lithium-ion transport, mitigating the electrolyte concentration gradient of lithium-ion. Additionally, perforating current collector with a chemical etching process increases the number of hydrogen bonding sites and enlarges the interface with the SiOx/AG composite electrode, significantly improving adhesion strength. This, in turn, suppresses mechanical degradation and leads to a 50% higher capacity retention. Thus, regularly arranged micropore structure enabled by the perforated current collector successfully improves both rate capability and cycle life in SiOx/AG composite electrodes, providing valuable insights into electrode engineering.
Developing effective, versatile, and high-precision sensing interfaces remains a crucial challenge in human–machine–environment interaction applications. Despite progress in interaction-oriented sensing skins, limitations remain in unit-level reconfiguration, multiaxial force and motion sensing, and robust operation across dynamically changing or irregular surfaces. Herein, we develop a reconfigurable omnidirectional triboelectric whisker sensor array (RO-TWSA) comprising multiple sensing units that integrate a triboelectric whisker structure (TWS) with an untethered hydro-sealing vacuum sucker (UHSVS), enabling reversibly portable deployment and omnidirectional perception across diverse surfaces. Using a simple dual-triangular electrode layout paired with MXene/silicone nanocomposite dielectric layer, the sensor unit achieves precise omnidirectional force and motion sensing with a detection threshold as low as 0.024 N and an angular resolution of 5°, while the UHSVS provides reliable and reversible multi-surface anchoring for the sensor units by involving a newly designed hydrogel combining high mechanical robustness and superior water absorption. Extensive experiments demonstrate the effectiveness of RO-TWSA across various interactive scenarios, including teleoperation, tactile diagnostics, and robotic autonomous exploration. Overall, RO-TWSA presents a versatile and high-resolution tactile interface, offering new avenues for intelligent perception and interaction in complex real-world environments.
Electrocatalytic nitric oxide (NO) reduction reaction (NORR) is a promising and sustainable process that can simultaneously realize green ammonia (NH3) synthesis and hazardous NO removal. However, current NORR performances are far from practical needs due to the lack of efficient electrocatalysts. Engineering the lattice of metal-based nanomaterials via phase control has emerged as an effective strategy to modulate their intrinsic electrocatalytic properties. Herein, we realize boron (B)-insertion-induced phase regulation of rhodium (Rh) nanocrystals to obtain amorphous Rh4B nanoparticles (NPs) and hexagonal close-packed (hcp) RhB NPs through a facile wet-chemical method. A high Faradaic efficiency (92.1 ± 1.2%) and NH3 yield rate (629.5 ± 11.0 µmol h−1 cm−2) are achieved over hcp RhB NPs, far superior to those of most reported NORR nanocatalysts. In situ spectro-electrochemical analysis and density functional theory simulations reveal that the excellent electrocatalytic performances of hcp RhB NPs are attributed to the upshift of d-band center, enhanced NO adsorption/activation profile, and greatly reduced energy barrier of the rate-determining step. A demonstrative Zn–NO battery is assembled using hcp RhB NPs as the cathode and delivers a peak power density of 4.33 mW cm−2, realizing simultaneous NO removal, NH3 synthesis, and electricity output.