AI vs supercomputers round 1: galaxy simulation goes to AI
Peer-Reviewed Publication
In honor of Global Astronomy Month, we’re exploring the science of space. Learn how astronomy connects us through curiosity, discovery, and a shared wonder for what lies beyond.
Updates every hour. Last Updated: 26-Jul-2025 19:10 ET (26-Jul-2025 23:10 GMT/UTC)
An unexpectedly strong solar storm rocked our planet on April 23, 2023, sparking auroras as far south as southern Texas in the U.S. and taking the world by surprise.
Two days earlier, the Sun blasted a coronal mass ejection (CME) — a cloud of energetic particles, magnetic fields, and solar material — toward Earth. But the CME wasn’t especially fast or massive, suggesting the storm would be minor. But it became severe.
Using NASA heliophysics missions, new studies of this storm and others are helping scientists learn why some CMEs have more intense effects — and better predict the impacts of future solar eruptions on our lives.
Moving mesh adaptation provides optimal resource allocation to computational fluid dynamics for the capture of different key physical features, i.e., high-resolution flow field solutions on low-resolution meshes. Although many moving mesh methods are available, they require artificial experience as well as computation of a posteriori information about the flow field, which poses a significant challenge for practical applications. Para2Mesh uses a double-diffusion framework to accomplish accurate flow field reconstruction through iterative denoising to provide flow field features as supervised information for fast and reliable mesh movement, thus enabling adaptive mesh prediction from design parameters.
Aircraft safety faces a critical challenge: “stall,” where wings lose lift at high angles, risking crashes. Researchers from the Civil Aviation University of China have developed a bio-inspired solution—microscopic herringbone grooves mimicking bird feathers—that delays stalls by 28.57%. This passive, low-cost technology reduces flow separation on wings, outperforming traditional methods while minimizing drag.