AI quake tools forecast aftershock risk in seconds, study shows
Peer-Reviewed Publication
This month, we’re focusing on artificial intelligence (AI), a topic that continues to capture attention everywhere. Here, you’ll find the latest research news, insights, and discoveries shaping how AI is being developed and used across the world.
Updates every hour. Last Updated: 31-Dec-2025 00:11 ET (31-Dec-2025 05:11 GMT/UTC)
Earthquake forecasting tools powered by AI can forecast the risk of aftershocks seconds after the initial tremor, a study suggests.
As silicon-based transistors face fundamental scaling limits, the search for breakthrough alternatives has led to innovations in 3D architectures, heterogeneous integration, and sub-3 nm semiconductor body thicknesses. However, the true effectiveness of these advancements lies in the seamless integration of alternative semiconductors tailored for next-generation transistors. In this review, we highlight key advances that enhance both scalability and switching performance by leveraging emerging semiconductor materials. Among the most promising candidates are 2D van der Waals semiconductors, Mott insulators, and amorphous oxide semiconductors, which offer not only unique electrical properties but also low-power operation and high carrier mobility. Additionally, we explore the synergistic interactions between these novel semiconductors and advanced gate dielectrics, including high-K materials, ferroelectrics, and atomically thin hexagonal boron nitride layers. Beyond introducing these novel material configurations, we address critical challenges such as leakage current and long-term device reliability, which become increasingly crucial as transistors scale down to atomic dimensions. Through concrete examples showcasing the potential of these materials in transistors, we provide key insights into overcoming fundamental obstacles—such as device reliability, scaling down limitations, and extended applications in artificial intelligence—ultimately paving the way for the development of future transistor technologies.
White oval squid (Sepioteuthis lessoniana sp. 2), known locally as shiro-ika, are medium-sized squids naturally distributed in the Indian and western Pacific oceans, flittering in and out of a wide range of different habitats – from shallow seagrass beds, over coral reefs, to depths of 100m along coastal environments. In such biodiverse zones, the squids encounter predators of all sizes and shapes, from seabirds flying overhead to sharks, tuna, and other cephalopods prowling under the sea.
Such a variety of threats calls for a large repertoire of survival strategies. Researchers from the Okinawan Institute of Science and Technology (OIST) have previously discovered how shiro-ika change color when moving between different shades of substrate – and now, the same team has painted a full picture of how the cephalopod employs a sophisticated range of camouflaging strategies to adapt to different environments and threats. “The wide variety of visual strategies used by the squid is surprisingly complex, especially considering that squid have traditionally been regarded as spending most of their lives in the open water column,” explains former OIST Visiting Researcher Dr. Ryuta Nakajima, “This discovery suggests that squid have a deeper behavioral relationship with the ocean floor than previously thought.”
Researchers have developed the world’s first real-world head-to-head testing platform to determine whether commercial artificial intelligence (AI) algorithms are fit for NHS use to detect disease in a fair, equitable, transparent and trustworthy way, using diabetic eye disease as the first example. They say that it removes any biases that can come from companies wanting to deploy their AI software in clinical settings, putting all companies on a level playing field.