New research: Satellite imagery detects illegal fishing activity, shows strict protections work
Peer-Reviewed Publication
Updates every hour. Last Updated: 8-Sep-2025 01:11 ET (8-Sep-2025 05:11 GMT/UTC)
In two separate studies leveraging satellite imagery and artificial intelligence techniques, researchers reveal patterns of industrial fishing in coastal marine protected areas (MPAs) worldwide. Collectively, the findings, which may seem contradictory, show that although industrial fishing vessels are present in many protected areas worldwide, MPAs with the highest levels of protection remain largely unfished. Both studies suggest that proper investment in protected areas will pay off and that synthetic aperture radar (SAR) satellite technology could be one of the key tools used to safeguard the ocean’s future sustainability. Roughly 8% of the global ocean is formally protected, with ambitious international targets aiming to more than triple that coverage by 2030. While such protections can yield substantial long-term benefits, especially when paired with adequate fisheries management, potential gains are often compromised by inadequate regulations. In many cases, destructive, illegal, or unreported fishing practices persist even within designated protected areas due to insufficient safeguards. Global-scale monitoring of industrial fishing, including within MPAs, has been aided by the emergence of automatic identification system (AIS) data, which tracks the activity of individual vessels. However, not all vessels are required to use it. Many disable their transponders to avoid detection, making it difficult to obtain reliable, large-scale estimates of fishing pressure within MPAs. As a result, the true effectiveness of MPAs worldwide remains poorly understood.
In one study, Jennifer Raynor and colleagues analyzed 455 coastal MPAs classified as “fully” or “highly” protected under the MPA guide, an assessment framework that evaluates protections based on both regulations and management practices. These categories fully ban industrial fishing within their bounds. Raynor et al. combined AI methods with a recently published global SAR satellite imagery dataset to directly identify industrial fishing vessels operating within MPAs, regardless of whether their AIS is active. The authors found that, overall, very little unauthorized industrial fishing activity occurs in MPAs that prohibit it, averaging just one vessel detected per 20,000 square kilometers – a rate 9 times lower than in unprotected exclusive economic zones. Although a few MPAs in East and South Asia showed higher vessel densities, these cases were outliers driven by small geographic areas and sporadic detections. Only seven MPAs worldwide had vessels present on more than half of observed days, highlighting how rare such activity is in strongly protected areas. Raynor et al. also demonstrate SAR imagery’s reliability in detecting unauthorized fishing vessels. Not only did the method successfully identify AIS-broadcasting vessels with high accuracy, it also detected vessels in 163 MPAs where AIS data showed none, particularly in regions like Southeast Asia, where AIS is often incomplete.
In another study, Raphael Seguin and colleagues quantified fishing activities across a larger group of 6021 coastal MPAs representing a wide range of protective categories as outlined by the International Union for Conservation of Nature (IUCN) management framework. Using the same SAR dataset and deep learning models, Sequin et al. discovered that nearly half of the MPAs evaluated showed evidence of industrial fishing at levels in many cases matching or exceeding those in nearby unprotected waters. According to the findings, industrial fishing vessels were detected in 47% of the world’s coastal MPAs. While stricter IUCN categories did correlate with reduced fishing, the authors concluded that factors such as MPA size and remoteness were more predictive of fishing presence than official protection category alone. In a Perspective, Boris Worm discusses the possible drivers underlying the differences in the two studies’ findings. “Many MPAs have been established quickly without strong protective regulations, meaningful consultation with local stakeholders, or appropriate management capacity. In some cases, this has resulted in “paper parks” that are recognized as protected areas but do not prevent harmful activities,” writes Worm. “Yet the available data show that where proper investments are made, industrial exploitation is curtailed, and protective measures are comprehensive, long-term benefits will accrue.”
Data is available for the production of data visualizations. For more information, please contact Raphael Seguin at raphaelseguin@protonmail.com
The global marine heatwaves (MHWs) of 2023 were unprecedented in their intensity, persistence, and scale, according to a new study. The findings provide insights into the region-specific drivers of these events, linking them to broader changes in the planet’s climate system. They may also portend an emerging climate tipping point. Marine heatwaves (MHWs) are intense and prolonged episodes of unusually warm ocean temperatures. These events pose severe threats to marine ecosystems, often resulting in widespread coral bleaching and mass mortality events. They also carry serious economic consequences by disrupting fisheries and aquaculture. It’s widely understood that human-driven climate change is driving a rapid increase in the frequency and intensity of MHWs. In 2023, regions across the globe, including the North Atlantic, Tropical Pacific, South Pacific, and North Pacific, experienced extreme MHWs. However, the causes underlying the onset, persistence, and intensification of widespread MHWs remain poorly understood.
To better understand the MHWs of 2023, Tianyun Dong and colleagues conducted a global analysis using combined satellite observations and ocean reanalysis data, including those from the ECCO2 (Estimating the Circulation and Climate of the Ocean-Phase II) high-resolution project. According to the findings, MHWs of 2023 set new records for intensity, duration, and geographic extent, lasting four times the historical average and covering 96% of the global ocean surface. Regionally, the most intense warming occurred in the North Atlantic, Tropical Eastern Pacific, North Pacific, and Southwest Pacific, collectively accounting for 90% of the oceanic heating anomalies. Dong et al. show that the North Atlantic MHW, which began as early as mid-2022, persisted for 525 days, while the Southwest Pacific event broke prior records with its vast spatial extent and prolonged duration. What’s more, in the Tropical Eastern Pacific, temperature anomalies peaked at 1.63 degrees Celsius during the onset of El Niño. Using a mixed-layer heat budget analysis, the authors discovered diverse regional drivers contributing to the formation and persistence of these events, including increased solar radiation due to reduced cloud cover, weakened winds, and ocean current anomalies. According to the authors, the 2023 MHWs may mark a fundamental shift in ocean–atmosphere dynamics, potentially serving as an early warning of an approaching tipping point in Earth’s climate system.
A first-of-its-kind experiment tracing evolution across 25 generations shows that tiny crustaceans at the heart of the ocean food web rely on a largely unknown biological toolkit to survive the stresses of climate change. The study reveals that it’s not only genetic changes that help these animals adapt to warming and acidifying ocean conditions. In addition, little-known epigenetic changes play a crucial role too. Remarkably, the researchers led by Melissa Pespeni at the University of Vermont discovered that the two mechanisms operate independently offering a two-pronged strategy for resilience. Until now, few studies have tracked genetic and epigenetic changes in tandem over many generations. This experiment is one of the first to do so in a long-term, replicated evolution study—offering some of the strongest evidence yet that epigenetic change can help populations survive and perhaps allow future genetic adaptation. Which means that copepods may be tougher under the stresses of a warming ocean than scientists previously would have predicted. And that could be good news for the fish species who eat copepods as primary prey—and many other creatures.
Remarkable fossils found in North Greenland have helped researchers solve a 500-million-year-old puzzle surrounding squid-like ancestors.
Researchers at The University of Osaka developed a deep learning model for rapid building damage assessment after floods using satellite imagery. This research establishes the first systematic benchmark for this task and introduces a novel semi-supervised learning method achieving 74% of fully supervised performance with just 10% of the labeled data. A new, lightweight deep learning model named Simple Prior Attention Disaster Assessment Net or SPADANet significantly reduces missed damaged buildings, improving recall by over 9% compared to existing models. This work provides crucial design principles for future AI disaster response, enabling faster and more efficient life-saving operations.
Researchers at The University of Texas at Austin analyzed the calcium isotopes in the teeth enamel of four different dinosaur species to discover what they ate. They found that some dinosaurs were discerning eaters, with different species preferring different plant parts. This helps explain how these dinosaurs, which all roamed the western U.S. during the Late Jurassic, were all able to coexist in the same ecosystem.