HSE researchers create genome-wide map of quadruplexes
Peer-Reviewed Publication
Updates every hour. Last Updated: 24-Dec-2025 18:11 ET (24-Dec-2025 23:11 GMT/UTC)
An international team, including researchers from HSE University, has created the first comprehensive map of quadruplexes—unstable DNA structures involved in gene regulation. For the first time, scientists have shown that these structures function in pairs: one is located in a DNA region that initiates gene transcription, while the other lies in a nearby region that enhances this process. In healthy tissues, quadruplexes regulate tissue-specific genes, whereas in cancerous tissues they influence genes responsible for cell growth and division. These findings may contribute to the development of new anticancer drugs that target quadruplexes. The study has been published in Nucleic Acids Research.
Rapid development of artificial intelligence requires the implementation of hardware systems with bioinspired parallel information processing and presentation and energy efficiency. Electrolyte-gated organic transistors (EGOTs) offer significant advantages as neuromorphic devices due to their ultra-low operation voltages, minimal hardwired connectivity, and similar operation environment as electrophysiology. Meanwhile, ionic–electronic coupling and the relatively low elastic moduli of organic channel materials make EGOTs suitable for interfacing with biology. This review presents an overview of the device architectures based on organic electrochemical transistors and organic field-effect transistors. Furthermore, we review the requirements of low energy consumption and tunable synaptic plasticity of EGOTs in emulating biological synapses and how they are affected by the organic materials, electrolyte, architecture, and operation mechanism. In addition, we summarize the basic operation principle of biological sensory systems and the recent progress of EGOTs as a building block in artificial systems. Finally, the current challenges and future development of the organic neuromorphic devices are discussed.
The environmental, social, and governance (ESG) report is globally recognized as a keystone in sustainable enterprise development. However, current literature has not concluded the development of topics and trends in ESG contexts in the twenty-first century. Therefore, we selected 1114 ESG reports from global firms in the technology industry to analyze the evolutionary trends of ESG topics by text mining. We discovered the homogenization effect toward low environmental, medium governance, and high social features in the evolution. We also designed a strategic framework to look closer into the dynamic changes of firms’ within-industry representiveness and cross-sector distinctiveness, which demonstrates corporate social responsibility and sustainability. We found that companies are gradually converging toward the third quadrant, which indicates that firms contribute less to industrial outstanding and professional distinctiveness in ESG reporting. Firms choose to imitate ESG reports from each other to mitigate uncertainty and enhance behavioral legitimacy.
Gastric (stomach) cancer remains one of the most common and deadly cancers in East Asia, including Korea. Yet despite its high prevalence, it has received far less molecular attention than colorectal cancer, which is more common in Western countries. As a result, many of today’s models of gastric cancer biology are still based on assumptions borrowed from colorectal cancer research — often with limited success when applied to patients.
One of the biggest unanswered questions has concerned the very first steps of gastric cancer development: how do early cancer cells survive and grow when they should not?
Under normal conditions, cells lining the stomach cannot grow independently. They rely on constant signals from their surrounding tissue — known as the microenvironment — to tell them when to divide, when to rest, and when to die. Losing this dependence is one of the defining features of cancer. But in gastric cancer, researchers have long struggled to explain how this transition occurs.
This problem has been tackled by a joint international research team led by Dr. LEE Ji-Hyun, Dr. KOO Bon-Kyoung, and Dr. LEE Heetak at the Center for Genome Engineering within the Institute for Basic Science (IBS), in partnership with the laboratories of Prof. CHEONG Jae-Ho and Prof. KIM Hyunki (Yonsei University College of Medicine) and Prof. Daniel E. STANGE (TU Dresden / University Hospital Carl Gustav Carus). The team has identified a previously unknown mechanism that allows early gastric cancer cells to become self-sufficient. The findings provide a new framework for understanding how stomach cancer begins — and point to potential new targets for treatment.