AMS Science Preview: Tall hurricanes, snow and wildfire
Peer-Reviewed Publication
Updates every hour. Last Updated: 15-Jun-2025 21:09 ET (16-Jun-2025 01:09 GMT/UTC)
In the solar system, Icy Worlds such as Europa and Enceladus hold great potential for extraterrestrial life and may provide humanity an answer, within this century, to the age-old question of life beyond Earth. Exo-AUV technology shows promise in life detection in the icy shell, at the ice-water interface and on the seafloor of Exo-ocean. Space agencies, including NASA and DLR, are enthusiastic about deploying Exo-AUVs to explore life in these regions. However, the where and how to find life, the technologies to be utilized and the goals to be achieved are crucial aspects for future Exo-AUV life detection missions on Icy Worlds. This study delves into a hypothetical mission of life detection on Europa, discussing science goals, detectable objects, potential regions and biogenic analysis for Icy Worlds. It proposes a life detection strategy for Icy Worlds based on Exo-AUVs, presents key contextual elements for Exo-AUV operations, outlines technological requirements for hull, payloads and autonomy, introduces the current state of Exo-AUV research and addresses existing challenges. This study also suggests a roadmap for conceptual development of Exo-AUV and a Concept of Operations for Multiple Exo-AUV System (ConOps for MEAS). This system aims to assist planetary scientists and astrobiologists in exploring Icy Worlds, identifying robust biosignatures and potentially discovering extant organisms, even prebiotic chemical systems.
An investigation published in National Science Review firstly presents comprehensive analysis for the spatiotemporal patterns and underlying drivers of compound low-solar-low-wind extremes over time across China. This research underscores the importance for nations engaging in progressive decarbonization to consider compound low-solar-low-wind extremes in renewable energy development and power sector planning, and proposes interregional renewable electricity transmission as a potential solution.
Recently, a research team led by Professor Shuxiao Wang from the School of Environment at Tsinghua University integrated a comprehensive global natural archive database of mercury (Hg) accumulation with modelled global atmospheric Hg deposition data. This integration revealed how global ecosystems respond to changes in atmospheric Hg input. The findings of this research were published in the National Science Review.