UCLA study finds AI scribes may reduce documentation time and improve physician well-being
Peer-Reviewed Publication
Updates every hour. Last Updated: 2-Jan-2026 14:11 ET (2-Jan-2026 19:11 GMT/UTC)
Artificial intelligence (AI) tools designed to automatically document patient visits show promise in reducing the time physicians spend on paperwork and may improve their work experience, according to a new randomized clinical trial conducted at UCLA Health.
Developing effective, versatile, and high-precision sensing interfaces remains a crucial challenge in human–machine–environment interaction applications. Despite progress in interaction-oriented sensing skins, limitations remain in unit-level reconfiguration, multiaxial force and motion sensing, and robust operation across dynamically changing or irregular surfaces. Herein, we develop a reconfigurable omnidirectional triboelectric whisker sensor array (RO-TWSA) comprising multiple sensing units that integrate a triboelectric whisker structure (TWS) with an untethered hydro-sealing vacuum sucker (UHSVS), enabling reversibly portable deployment and omnidirectional perception across diverse surfaces. Using a simple dual-triangular electrode layout paired with MXene/silicone nanocomposite dielectric layer, the sensor unit achieves precise omnidirectional force and motion sensing with a detection threshold as low as 0.024 N and an angular resolution of 5°, while the UHSVS provides reliable and reversible multi-surface anchoring for the sensor units by involving a newly designed hydrogel combining high mechanical robustness and superior water absorption. Extensive experiments demonstrate the effectiveness of RO-TWSA across various interactive scenarios, including teleoperation, tactile diagnostics, and robotic autonomous exploration. Overall, RO-TWSA presents a versatile and high-resolution tactile interface, offering new avenues for intelligent perception and interaction in complex real-world environments.
To enhance the electrochemical performance of lithium-ion battery anodes with higher silicon content, it is essential to engineer their microstructure for better lithium-ion transport and mitigated volume change as well. Herein, we suggest an effective approach to control the micropore structure of silicon oxide (SiOx)/artificial graphite (AG) composite electrodes using a perforated current collector. The electrode features a unique pore structure, where alternating high-porosity domains and low-porosity domains markedly reduce overall electrode resistance, leading to a 20% improvement in rate capability at a 5C-rate discharge condition. Using microstructure-resolved modeling and simulations, we demonstrate that the patterned micropore structure enhances lithium-ion transport, mitigating the electrolyte concentration gradient of lithium-ion. Additionally, perforating current collector with a chemical etching process increases the number of hydrogen bonding sites and enlarges the interface with the SiOx/AG composite electrode, significantly improving adhesion strength. This, in turn, suppresses mechanical degradation and leads to a 50% higher capacity retention. Thus, regularly arranged micropore structure enabled by the perforated current collector successfully improves both rate capability and cycle life in SiOx/AG composite electrodes, providing valuable insights into electrode engineering.
Researchers at the College of Design and Engineering, National University of Singapore, have created an untethered soft robot that embodies deformation-resilient flexible batteries enabled by the same magnetic fields that drive its movement. The team developed flexible batteries that endure constant bending and perform better under magnetic fields, improving capacity retention from 31% to 57% after 200 cycles. Integrated with sensors and circuits in a manta-ray-shaped design, the soft robot can swim freely, detect temperature changes, avoid obstacles and correct its path in real time, advancing embodied intelligence for soft robotics in confined, fragile and dynamic environments.