Physics informed AI excels at large scale discovery of new materials
The Korea Advanced Institute of Science and Technology (KAIST)Peer-Reviewed Publication
One of the key steps in developing new materials is “property identification,” which has long relied on massive amounts of experimental data and expensive equipment, limiting research efficiency. A KAIST research team has introduced a new technique that combines “physical laws,” which govern deformation and interaction of materials and energy, with artificial intelligence. This approach allows for rapid exploration of new materials even under data-scarce conditions and provides a foundation for accelerating design and verification across multiple engineering fields, including materials, mechanics, energy, and electronics.
KAIST (President Kwang Hyung Lee) announced on the 2nd of October that Professor Seunghwa Ryu’s research group in the Department of Mechanical Engineering, in collaboration with Professor Jae Hyuk Lim’s group at Kyung Hee University (President Jinsang Kim) and Dr. Byungki Ryu at the Korea Electrotechnology Research Institute (President Namkyun Kim), proposed a new method that can accurately determine material properties with only limited data. The method uses Physics-Informed Machine Learning (PIML), which directly incorporates physical laws into the AI learning process.
- Journal
- npj Computational Materials
- Funder
- Korea Research Foundation, Ministry of Science and ICT