Astronomy breakthrough: The mystery of dark matter can be unraveled using radio telescopes
Peer-Reviewed Publication
Updates every hour. Last Updated: 21-Dec-2025 10:11 ET (21-Dec-2025 15:11 GMT/UTC)
A new study from Tel Aviv University has predicted, for the first time, the groundbreaking results that can be obtained from detecting radio waves coming to us from the early Universe. The findings show that during the cosmic dark ages, dark matter formed dense clumps throughout the Universe, which pulled in hydrogen gas and caused it to emit intense radio waves. This leads to a novel method to use the measured radio signals to help resolve the mystery of dark matter.
A new class of highly efficient and scalable quantum low-density parity-check error correction codes, capable of performance approaching the theoretical hashing bound, has been developed by scientists at Institute of Science Tokyo, Japan. These novel error-correction codes can handle quantum codes with hundreds of thousands of qubits, potentially enabling large-scale fault-tolerant quantum computing, with applications in diverse fields, including quantum chemistry and optimization problems.
A research team led by Prof. Guo-Yong Xiang and Prof. Wei Yi from the University of Science and Technology of China (USTC) of the Chinese Academy of Sciences, has reported the experimental observation of chiral switching between collective steady states in a dissipative Rydberg gas. This phenomenon, underpinned by a unique "Liouvillian exceptional structure" inherent to non-Hermitian physics, allows the state of the system to be controlled by the direction in which it is tuned through the parameter space, much like a revolving door that only allows exit in one direction. The results were published in Science Bulletin.
During the preliminary design phase of flapping-wing micro air vehicles (FWMAVs), there currently exists a deficiency in rapid prediction method for the aerodynamic characteristics of flexible flapping wings. A novel aerodynamic prediction method for flexible flapping wings has recently achieved significant breakthroughs. This method innovatively employs conical surface to mimic wing deformation, combined with an unsteady panel method for aerodynamic force computation, enabling rapid and accurate prediction of both aerodynamic characteristics and control moments of flexible flapping wings.