CTAO LST collaboration paper provides new clues about gamma-ray burst jets
Peer-Reviewed Publication
Updates every hour. Last Updated: 5-Aug-2025 00:11 ET (5-Aug-2025 04:11 GMT/UTC)
Platinum diselenide (PtSe2) is a two-dimensional multilayer material in which each layer is composed of platinum (Pt) and selenium (Se). It is known that its excellent crystallinity and precise control of interlayer interactions allow modulation of various physical and chemical properties. Due to these characteristics, it has been actively researched in multiple fields, including semiconductors, photodetectors, and electrochemical devices. Now, a research team has proposed a new design concept in which atomically dispersed platinum on the surface of platinum diselenide can function as a catalyst for gas reactions. Through this, they have proven its potential as a next-generation gas-phase catalyst technology for high-efficiency carbon dioxide conversion and carbon monoxide reduction.
KAIST (President Kwang Hyung Lee) announced on July 22 that a joint research team led by Endowed Chair Professor Jeong Young Park from the Department of Chemistry, along with Professor Hyun You Kim's team from Chungnam National University and Professor Yeonwoong (Eric) Jung's team from the University of Central Florida (UCF), has achieved excellent carbon monoxide oxidation performance by utilizing platinum atoms exposed on the surface of platinum diselenide, a type of two-dimensional transition metal dichalcogenide (TMD).
To maximize catalytic performance, the research team designed the catalyst by dispersing platinum atoms uniformly across the surface, departing from the conventional use of bulk platinum. This strategy allows more efficient catalytic reactions using a smaller amount of platinum. It also enhances electronic interactions between platinum and selenium by tuning the surface electronic structure. As a result, the platinum diselenide film with a thickness of a few nanometers showed superior carbon monoxide oxidation performance across the entire temperature range compared to a conventional platinum thin film under identical conditions.
A joint international research team has, for the first time, unveiled the crucial link between the structure of the solid electrolyte interphase (SEI) and the efficiency of lithium-mediated nitrogen reduction to ammonia, a promising eco-friendly approach to fertilizer production. Using in situ spectroscopy, the team directly observed the previously poorly understood SEI formation process, revealing that the ethanol-to-water ratio in the electrolyte significantly impacts ammonia conversion efficiency. This discovery opens a new avenue for sustainable fertilizer production by reducing reliance on fossil fuels and lowering greenhouse gas emissions.
Researchers at The University of Osaka have developed a new program, “postw90-spin,” that enables high-precision calculations of a novel performance indicator for the spin Hall effect, a phenomenon crucial for developing energy-efficient and high-speed next-generation magnetic memory devices. This breakthrough addresses a long-standing challenge in spintronics research by providing a definitive measure of the spin Hall effect, overcoming ambiguities associated with traditional metrics.
This study provides valuable insights into the prevention of toxic gas diffusion during lithium battery fires, offering a potential solution for protecting firefighters’ respiratory health. The findings highlight the potential of flower-like CeO2 microspheres as an effective adsorbent for HF gas removal during LIB thermal runaway, which could significantly enhance the safety of lithium-ion batteries in various applications.
Plastics are one of the largest sources of pollution on Earth, lasting for years on land or in water. But a new type of brilliantly colored cellulose-based plastic detailed in ACS Nano could change that. By adding citric acid and squid ink to a cellulose-based polymer, researchers created a variety of structurally colored plastics that were comparable in strength to traditional plastics, but made from natural biodegradable ingredients and easily recycled using water.