Thiacalix[4]arene functionalized molecular clusters involving Keggin-type PM4Mo8 (M= Co, Ni) motif: Electrochemical and photothermal conversion properties
Peer-Reviewed Publication
Updates every hour. Last Updated: 16-Aug-2025 04:11 ET (16-Aug-2025 08:11 GMT/UTC)
Polyoxometalates (POMs) have broad applicability and significant potential in electrocatalysis and photocatalysis. However, the practical application of pure POMs is significantly constrained by their decomposition in polar media (such as neutral and alkaline solutions). The modification of POMs with metal-calixarene clusters is beneficial for fabricating functional hybrid materials with the combined merits of the two components. Four new thiacalixarene-functionalized polyoxometalate clusters were synthesized by researchers at School of Petrochemical Engineering, Liaoning Petrochemical University, China. These four clusters were characterized by Keggin-type PM4Mo8 motifs, which confer redox properties similar to those of PMo12O403− (PMo12) while providing superior structural stability and electrocatalytic reduction of IO3−. The substitution of four metal ions in PMo12, along with the capping TC4A ligand and VO unit, significantly modulated visible-light absorption, enhancing photothermal conversion in the solid state and organic solutions.
South China Sea marine heatwaves split into two types, with ocean dynamics playing a surprising role
Magnetic hysteresis loss or iron loss in soft magnetic materials accounts for approximately 30% of energy loss in electric motors. This loss results in significant energy loss globally, representing a pressing environmental concern. However, the origin of iron loss remains elusive despite decades of research. Now, scientists have developed a new physics-based machine-learning approach that automatically identifies the origin of iron loss, establishing a new paradigm for designing efficient soft magnetic materials.
Can you imagine a life-saving molecule whose “twin” is a deadly poison? As surprising as it may seem, this chemical reality is known as “chirality”. Like a right hand and a left hand, two molecules can have the same composition, but a different shape and arrangement in space. And this difference can change everything. Understanding and controlling this phenomenon is crucial to drug design. A team from the University of Geneva (UNIGE), in collaboration with the University of Pisa, has developed a new family of remarkably stable chiral molecules. This work opens up new prospects for the design of geometry-controlled drugs. It is published in the Journal of the American Chemical Society.
A new paper in Environmental Toxicology and Chemistry finds that efforts to eradicate invasive molluscs in Idaho’s Snake River may kill off valuable freshwater species.
A research team has discovered an electrochemical method that allows highly selective para-position single-carbon insertion into polysubstituted pyrroles. Their approach has important applications in synthetic organic chemistry, especially in the field of pharmaceuticals.
Their work is published in the Journal of the American Chemical Society on July 14.