CONCERT wins EUR 10 million ERC Synergy Grant to learn how to control molecules through light
Grant and Award Announcement
Updates every hour. Last Updated: 21-Dec-2025 20:11 ET (22-Dec-2025 01:11 GMT/UTC)
The research team including Giulio Cerullo, professor in the Department of Physics, Politecnico di Milano, Caterina Vozzi from the CNR Institute of Photonics and Nanotechnology, Marco Garavelli from the University of Bologna, and Shaul Mukamel from the University of California has been awarded a €10 million ERC Synergy Grant to “film” molecules as they change shape under the effect of light, and to learn how to guide these transformations.
Scientists used molecular simulations to reveal how polymer chains adhere to alumina surfaces. Adhesion depends on both polymer chemistry and surface termination, with different responses before and after yielding. These insights clarify metal–plastic bonding mechanisms and offer guidelines for designing stronger, lighter, and more sustainable hybrid materials for use in transportation.
Chloride-based solid electrolytes are considered promising candidates for next-generation high-energy–density all-solid-state batteries (ASSBs). However, their relatively low oxidative decomposition threshold (~ 4.2 V vs. Li+/Li) constrains their use in ultrahigh-voltage systems (e.g., 4.8 V). In this work, ferroelectric BaTiO3 (BTO) nanoparticles with optimized thickness of ~ 50–100 nm were successfully coated onto Li2.5Y0.5Zr0.5Cl6 (LYZC@5BTO) electrolytes using a time-efficient ball-milling process. The nanoparticle-induced interfacial ionic conduction enhancement mechanism contributed to the preservation of LYZC’s high ionic conductivity, which remained at 1.06 mS cm−1 for LYZC@5BTO. Furthermore, this surface electric field engineering strategy effectively mitigates the voltage-induced self-decomposition of chloride-based solid electrolytes, suppresses parasitic interfacial reactions with single-crystal NCM811 (SCNCM811), and inhibits the irreversible phase transition of SCNCM811. Consequently, the cycling stability of LYZC under high-voltage conditions (4.8 V vs. Li⁺/Li) is significantly improved. Specifically, ASSB cells employing LYZC@5BTO exhibited a superior discharge capacity of 95.4 mAh g−1 over 200 cycles at 1 C, way outperforming cell using pristine LYZC that only shows a capacity of 55.4 mAh g−1. Furthermore, time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy analysis revealed that Metal-O-Cl by-products from cumulative interfacial side reactions accounted for 6% of the surface species initially, rising to 26% after 200 cycles in pristine LYZC. In contrast, LYZC@5BTO limited this increase to only 14%, confirming the effectiveness of BTO in stabilizing the interfacial chemistry. This electric field modulation strategy offers a promising route toward the commercialization of high-voltage solid-state electrolytes and energy-dense ASSBs.
Researchers have developed miniature magnetic robots that mimic fish behavior, working together as coordinated swarms to deliver drugs precisely and efficiently to tissue. The breakthrough could transform treatment of conditions where individual tiny robots lack sufficient coverage area for effective therapy.