Programmable DNA moiré superlattices: expanding the material design space at the nanoscale
Peer-Reviewed Publication
Updates every hour. Last Updated: 11-Sep-2025 04:11 ET (11-Sep-2025 08:11 GMT/UTC)
Researchers are creating new moiré materials at the nanometer scale using advanced DNA nanotechnology: DNA moiré superlattices form when two periodic DNA lattices are overlaid with a slight rotational twist or positional offset. This creates a new, larger interference pattern with completely different physical properties. A new approach developed by researchers at the University of Stuttgart and the Max Planck Institute for Solid State Research not only facilitates the complex construction of these superlattices; it also unlocks entirely new design possibilities at the nanoscale. The study has been published in the journal Nature Nanotechnology.
International researchers have, for the first time, pinpointed the moment when planets began to form around a star beyond the Sun. Using the ALMA telescope, in which the European Southern Observatory (ESO) is a partner, and the James Webb Space Telescope, they have observed the creation of the first specks of planet-forming material — hot minerals just beginning to solidify. This finding marks the first time a planetary system has been identified at such an early stage in its formation and opens a window to the past of our own Solar System.