New customizable nanomedicine platform “TITUR” shows promise for advancing personalized mRNA cancer therapeutics
Peer-Reviewed Publication
Updates every hour. Last Updated: 1-Nov-2025 02:11 ET (1-Nov-2025 06:11 GMT/UTC)
Scientists have demonstrated the key role of a tungsten-containing enzyme in the production of ethanol from carbon monoxide performed by the microbe Clostridium autoethanogenum. This discovery resolves a long-standing biochemical debate and provides new insight into how bacteria can transform industrial waste gases into valuable biofuels and chemicals.
The National Foundation for Cancer Research (NFCR) hosted its 2025 Global Summit and Award Ceremonies for Cancer Research & Entrepreneurship on October 24 at the National Press Club, in Washington, D.C., gathering many of the most forward-thinking minds in oncology, cancer research, technology, patient care, and biomedical innovation.
This year’s summit centered on a defining theme: how artificial intelligence (AI) is reshaping the entire ecosystem of cancer research and patient care, from laboratory discovery to bedside decision-making.
Extreme cold weather seriously harms human thermoregulatory system, necessitating high-performance insulating garments to maintain body temperature. However, as the core insulating layer, advanced fibrous materials always struggle to balance mechanical properties and thermal insulation, resulting in their inability to meet the demands for both washing resistance and personal protection. Herein, inspired by the natural spring-like structures of cucumber tendrils, a superelastic and washable micro/nanofibrous sponge (MNFS) based on biomimetic helical fibers is directly prepared utilizing multiple-jet electrospinning technology for high-performance thermal insulation. By regulating the conductivity of polyvinylidene fluoride solution, multiple-jet ejection and multiple-stage whipping of jets are achieved, and further control of phase separation rates enables the rapid solidification of jets to form spring-like helical fibers, which are directly entangled to assemble MNFS. The resulting MNFS exhibits superelasticity that can withstand large tensile strain (200%), 1000 cyclic tensile or compression deformations, and retain good resilience even in liquid nitrogen (− 196 °C). Furthermore, the MNFS shows efficient thermal insulation with low thermal conductivity (24.85 mW m−1 K−1), close to the value of dry air, and remains structural stability even after cyclic washing. This work offers new possibilities for advanced fibrous sponges in transportation, environmental, and energy applications.
Pipelines are extensively used in environments such as nuclear power plants, chemical factories, and medical devices to transport gases and liquids. These tubular environments often feature complex geometries, confined spaces, and millimeter-scale height restrictions, presenting significant challenges to conventional inspection methods. Here, we present an ultrasonic microrobot (weight, 80 mg; dimensions, 24 mm × 7 mm; thickness, 210 μm) to realize agile and bidirectional navigation in narrow pipelines. The ultrathin structural design of the robot is achieved through a high-performance piezoelectric composite film microstructure based on MEMS technology. The robot exhibits various vibration modes when driven by ultrasonic frequency signals, its motion speed reaches 81 cm s−1 at 54.8 kHz, exceeding that of the fastest piezoelectric microrobots, and its forward and backward motion direction is controllable through frequency modulation, while the minimum driving voltage for initial movement can be as low as 3 VP-P. Additionally, the robot can effortlessly climb slopes up to 24.25° and carry loads more than 36 times its weight. The robot is capable of agile navigation through curved L-shaped pipes, pipes made of various materials (acrylic, stainless steel, and polyvinyl chloride), and even over water. To further demonstrate its inspection capabilities, a micro-endoscope camera is integrated into the robot, enabling real-time image capture inside glass pipes.