Non-invasive technology can shape the brain’s reward-seeking mechanisms
Peer-Reviewed Publication
Updates every hour. Last Updated: 28-Nov-2025 05:11 ET (28-Nov-2025 10:11 GMT/UTC)
New research led by the University of Plymouth, with partners at universities and healthcare facilities in the UK and USA, has found that targeted ultrasound can be used to change the function of a deep region of the human brain. Specifically, it can be used to target the nucleus accumbens, a tiny element of the human brain triggered when we experience something enjoyable, and used to help us learn behaviours that lead to rewards. With surgical treatments currently the only option to target this area of the brain, those behind the study believe it marks a turning point for neurotechnology, showing that a non-invasive ultrasound approach can influence behaviour and may one day help restore mental balance.
Using EUROSTAT data and double randomization, the co-led study improves the Benefit of the Doubt model through a novel Ensemble-DEA framework that mitigates the curse of dimensionality in SDG indicators. Published in Expert Systems with Applications, the method offers more reliable EU performance rankings and benchmarking tools for evaluating sustainability policies across member states.
Bacteria that multiply on surfaces are a major headache in healthcare when they gain a foothold on, for example, implants or in catheters. Researchers at Chalmers University of Technology in Sweden have found a new weapon to fight these hotbeds of bacterial growth – one that does not rely on antibiotics or toxic metals. The key lies in a completely new application of this year's Nobel Prize-winning material: metal-organic frameworks. These materials can physically impale, puncture and kill bacteria before they have time to attach to the surface.
The cherry harvest wrapped up months ago. But in Michigan, some growers are already anticipating the spring resurgence of a tiny raptor that could benefit next season’s crop. As birds of prey, American kestrels deter smaller birds that like to snack on farmers’ fruit. New research shows they reduce the likelihood of cherry damage more than tenfold. But the study suggests that these winged security guards may have an additional benefit: food safety.
In a significant stride towards cleaner water, researchers at the School of Resources and Environment, Northeast Agricultural University, Harbin, China, have developed a novel material that effectively removes harmful pollutants from water. Professors Jianhua Qu and Ying Zhang lead the team behind the study titled "Synthesis of Polyvinyl Chloride Modified Magnetic Hydrochar for Effective Removal of Pb(II) and Bisphenol A from Aqueous Phase: Performance and Mechanism Exploration." This innovative research introduces a powerful new tool in the fight against water pollution.