Artificial intelligence technology in environmental research and health
Peer-Reviewed Publication
Updates every hour. Last Updated: 15-Dec-2025 12:11 ET (15-Dec-2025 17:11 GMT/UTC)
It begins as a trickle high on the Tibetan Plateau—icy, remote, and pure. By the time it reaches the Three Gorges, the Yangtze River has grown into a force of nature, carrying not just water, but the chemical fingerprint of an entire continent. Now, a groundbreaking study from Peking University reveals the invisible story hidden in the river’s flow: the molecular evolution of dissolved organic matter (DOM) along a 3,500-kilometer stretch of the upper Yangtze—the world’s third-longest river. Published on August 11, 2025, in Carbon Research as an open-access original article, this research was led by Dr. Dongqiang Zhu from the College of Urban and Environmental Sciences and the Key Laboratory of the Ministry of Education for Earth Surface Processes at Peking University, Beijing. Using a powerful suite of analytical tools—including fluorescence spectroscopy, lignin phenol markers, and ultra-high-resolution Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS)—Dr. Zhu’s team traced how organic carbon changes as it travels from the river’s high-altitude headwaters to its densely populated downstream reaches. And what they found is a dynamic, ever-changing mosaic of carbon chemistry shaped by glaciers, grasslands, wildfires, forests, and sunlight.
Trying to document how single brain cells participate in networks that govern behavior is a daunting task. A newly developed brain probe, called Neuropixels Ultra, overcomes some key technical challenges in recording the cell type and activity of thousands of individual cells across many brain regions. The project is part of the NIH BRAIN Initiative to create innovative neurotechnologies to map and analyze brain dynamics.
Researchers led by Prof. GAO Caixia from the Institute of Genetics and Developmental Biology (IGDB) of the Chinese Academy of Sciences (CAS) and Prof. QIU Jinlong from the Institute of Microbiology of CAS have developed a new system that enables rapid and scalable directed evolution of diverse genes directly in plant cells.