Positive charges stabilize instantly in key solar fuel catalyst: New simulations track ultrafast polaron formation in NaTaO3.
Peer-Reviewed Publication
Updates every hour. Last Updated: 22-Dec-2025 19:11 ET (23-Dec-2025 00:11 GMT/UTC)
To boost solar water splitting efficiency, researchers used quantum molecular dynamics to track how charge carriers (polarons) stabilize in the NaTaO3 photocatalyst, a process previously hidden from experiments. They discovered that positive hole polarons stabilize strongly and rapidly (~70 meV in 50 fs) driven by the elongation of oxygen-tantalum (O-Ta) bonds, while electron stabilization is insignificant. This time-resolved, atomistic understanding provides crucial guidelines for rationally engineering O-Ta bond dynamics to create high-performance solar fuel catalysts.
Adiposity—or the accumulation of excess fat in the body—is a known driver of cardiometabolic diseases such as heart disease, stroke, type 2 diabetes, and kidney disease. But getting the full picture of a person’s risk is harder than it may seem. Traditional measures such as body mass index (BMI) are imperfect, conflating fat and muscle mass and not capturing where in the body fat is located. A new study from researchers at Mass General Brigham and their colleagues found that an AI tool designed to measure body composition could accurately capture details in just three minutes from a body scan. Their results, published in Annals of Internal Medicine, show that not all fat is equally harmful and highlight the potential of using AI to repurpose data from routine scans.
A new tool greatly improves scientists’ ability to identify and study proteins that regulate gene activity in cells, according to research led by Weill Cornell Medicine investigators. The technology should enable and enhance investigations in both fundamental biology and disease research.
Why did life on Earth choose alpha amino acids as the building blocks of proteins? A new study suggests the answer lies in the stability of their inter-molecular interactions. Researchers found that primitive peptide-like molecules made from alpha backbones formed more durable, compartment-like structures than their longer beta counterparts, giving them a potential evolutionary advantage. The findings propose an assembly-driven model for the origins of life, offering fresh insight into how chemistry shaped biology.
Some of the first animals on Earth were likely ancestors of the modern sea sponge, according to MIT geochemists who unearthed new evidence in very old rocks.