Teaching lasers to self-correct in high-precision patterned laser micro-grooving
Peer-Reviewed Publication
Updates every hour. Last Updated: 21-Jul-2025 02:11 ET (21-Jul-2025 06:11 GMT/UTC)
Researchers at Southern University of Science and Technology developed an adaptive beam shaping method for laser micro-grooving to shape tiny grooves with sub-micron accuracy—even in hard-to-machine materials like silicon carbide.
By combining smart simulations and real-time adjustments, their system “teaches” lasers to self-compensation deviation between experimental and target results caused by diffraction and polarization, achieving 5× higher precision than traditional patterned laser ablation methods.
“Here, you can think of the laser as a shaped knife, and you can achieve the desired groove shape with a single stroke”, says Prof. Shaolin Xu.
To realize a sustainable low-carbon society, it is essential to establish a catalytic process that converts various concentrations of CO2 in combustion exhaust gases from thermal power plants and other sources into useful chemicals using renewable hydrogen. However, due to the high oxygen (O2) content (about 10%) in such exhaust gases, conventional catalytic methods face a major challenge in that H2 reacts preferentially with O2, making efficient CO2 conversion technically impossible. A research team led by Hokkaido University has developed a tandem system that continuously captures and converts CO2 in a wide concentration range, from atmospheric levels to exhaust gases. Their work is published in the journal Industrial Chemistry & Materials on June 13, 2025.
A research team led by Dr. Kee Young Koo from the Hydrogen Research Department at the Korea Institute of Energy Research (President: Yi Chang-Keun, hereafter referred to as KIER) has developed a novel and more cost-effective method for synthesizing ammonia decomposition catalysts.
Researchers from Tel Aviv University and the Israel Institute for Biological Research in Ness Ziona have used the platform developed for COVID-19 vaccines to create the world’s first mRNA-based vaccine against a deadly, antibiotic-resistant bacterium. In this groundbreaking study, the researchers tested the vaccine’s resistance to the virulent pathogen that causes the disease and were able to demonstrate 100% protection against infection in animal models. The researchers now hope that this technology can be used to combat other lethal bacteria as well.
The Department of Energy’s Oak Ridge National Laboratory and JuggerBot 3D, an industrial 3D printer equipment manufacturer, have launched their second research and development collaboration through the Manufacturing Demonstration Facility, or MDF, Technical Collaboration Program.
In a paper published in National Science Review, scientists demonstrate quantum key distribution using a room-temperature GaN-based single-photon source directly emitting in the telecom band in a deployed fiber link. Special technics are used to minimize the effect of Polarization Mode Dispersion.