Bidirectional ion–electric field synergy via in situ grown BiOCl/Bi heterostructure enabling ultra–stable zinc anodes across wide temperatures
Peer-Reviewed Publication
Updates every hour. Last Updated: 31-Oct-2025 15:11 ET (31-Oct-2025 19:11 GMT/UTC)
A semiconductor–metal synergistic interface design via in situ engineering of a Bi/BiOCl heterostructure on Zn anodes was presented. This dual–functional heterointerface enables unprecedented electrochemical performance, including: (i) stable cycling for 2500 h at 10 mA cm–2 in symmetric cells; (ii) 1000 cycles at 10 A g–1 for the Zn@Bi/BiOCl//dibenzo[b,i]thianthrene–5,7,12,14–tetraone (DTT) full battery, and 15,000 cycles at room temperature and 7500 cycles at –20 °C for the Zn@Bi/BiOCl//activated carbon (AC) hybrid ion capacitor (HIC), outperforming most reported AZIBs. This breakthrough originates from a dual–functional synergy: Bi nanoparticles serve as zincophilic nucleation guides to expedite homogeneous Zn2+ deposition, while the BiOCl semiconductor establishes a built–in electric field with Zn to redistribute interfacial ion/charge flux and elevate the hydrogen evolution barrier. This coordinated regulation simultaneously inhibits Zn dendrite formation, HER, and Zn corrosion, imparting promising applications for Zn anodes in AZIBs. Our work not only resolves the long–standing interfacial instability of Zn anodes but also pioneers a semiconductor–metal heterojunction strategy, offering a universal platform for designing dendrite–free metal batteries operable under extreme thermal and rate conditions.
A practical, evidence-based checklist developed by scientists at the University of Surrey is helping everyone from keen gardeners to local councils plan their next greening project with confidence.
POSTECH and Chung-Ang University team have developed a low-tortuosity, lithiophilicity-graded porous structure to suppress dendrite growth in lithium metal batteries.