Scientists use math to predict crystal structure in hours instead of months
Peer-Reviewed Publication
Updates every hour. Last Updated: 4-May-2025 02:10 ET (4-May-2025 06:10 GMT/UTC)
Researchers at New York University have devised a mathematical approach to predict the structures of crystals—a critical step in developing many medicines and electronic devices—in a matter of hours using only a laptop, a process that previously took a supercomputer weeks or months. Their novel framework is published in the journal Nature Communications.
Water, a molecule essential for life, has unusual properties — known as anomalies — that define its behaviour. However, there are still many enigmas about the molecular mechanisms that would explain the anomalies that make the water molecule unique. Deciphering and reproducing this particular behaviour of water in different temperature ranges is still a major challenge for the scientific community. Now, a study presents a new theoretical model capable of overcoming the limitations of previous methodologies to understand how water behaves in extreme conditions. The paper, featured on the cover of The Journal of Chemical Physics, is led by Giancarlo Franzese and Luis Enrique Coronas, from the Faculty of Physics and the Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB).
Scientists from around the world will meet to present new research on the physics of fluids at the 77th annual meeting of the American Physical Society’s (APS) Division of Fluid Dynamics.
Scientists at UMC Utrecht have developed a new technology to efficiently isolate a specific subset of gut bacteria from fecal samples that are recognized by IgA antibodies. These ‘IgA-coated’ bacteria are associated with an array of diseases and this proposed new technology has the potential to uncover the mechanisms behind these correlations and eventually lead to new treatment strategies.