Discovering new materials: AI can simulate billions of atoms simultaneously
Peer-Reviewed Publication
Updates every hour. Last Updated: 12-Aug-2025 22:11 ET (13-Aug-2025 02:11 GMT/UTC)
Scientists tackle one of the most challenging problems in physics--the interplay between quantum theory and gravity—from a different angle.
The modulation of the surface structure of platinum-based single-atom alloys is crucial for improving the catalytic performance in propane dehydrogenation. The optimization of the surface structure of PtCu clusters was attained through regenerative treatment, which significantly improved the propylene yield and catalytic stability, thereby offering a viable strategy for the design of alloy catalysts applicable to various high-temperature dehydrogenation reactions.
NiMo-NiMoOx with crystalline/amorphous heterointerface was fabricated by a facile electrodeposition method. Theoretical calculations and experimental results confirm that the introduction of Mo atoms can not only lower the energy barrier of water dissociation and optimize the capacity for hydrogen adsorption/desorption, but also modulate the ratio between crystalline and amorphous phases, increasing the heterostructure interfaces and enriching active sites. Thus, the NiMo-NiMoOx electrocatalyst exhibits remarkable HER catalytic properties and durability. It requires a low overpotential of 30 mV at the current density of 10 mA cm-2 in 1.0 M KOH, as well as a long-term stability with slight degradation after operating for over 80 h. Moreover, it also exhibits excellent activity and stability with negligible declination in the simulated alkaline seawater, making it highly promising for seawater electrolysis applications.