Measuring air pollutants in real time: ERC proof of concept grant for TU Graz physicist
Grant and Award Announcement
Updates every hour. Last Updated: 13-Aug-2025 14:11 ET (13-Aug-2025 18:11 GMT/UTC)
Volatile air pollutants such as nitrogen dioxide and ozone are only monitored loosely in the EU. Separate devices are used for each individual pollutant, and real-time monitoring is not possible. Birgitta Schultze-Bernhardt from the Institute of Experimental Physics at Graz University of Technology (TU Graz) would like to simplify and significantly improve these measurements. In her MULTI TRACE research project, she is developing a portable device that can determine the concentration of several gaseous pollutants in ambient air with the utmost accuracy within fractions of a second. The heart of the system is a laser-based dual-comb spectrometer, which Birgitta Schultze-Bernhardt developed with funding from an ERC Starting Grant in the predecessor project ELFIS. In order to take the technology closer to real-world application, the European Research Council is funding the MULTI TRACE project for 18 months with a Proof of Concept Grant totalling 150,000 euros.
Researchers have demonstrated a new technique that allows “self-driving laboratories” to collect at least 10 times more data than previous techniques at record speed. The advance dramatically expedites materials discovery research, while slashing costs and environmental impact.
Scientists from the Marine Biological Association and the University of Plymouth have revisited turn-of-the-century forecasts about the many and varied threats they thought were likely to face the world’s shorelines in 2025. Their new study highlights that many of their forecasts were correct, either in whole or in part, while others haven’t had the impacts that were envisaged at the time. They have also charted some of the other threats to have emerged and/or grown in significance since their original work, with notable examples including global plastic pollution, ocean acidification, extreme storms and weather, and light and noise pollution.
The public, legislators, and media often group per- and polyfluoroalkyl substances, known as PFAS or “forever chemicals,” which are found globally in countless products, into a single category. While certain PFAS are harmful for human and public health, new articles in Heart Rhythm, the official journal of the Heart Rhythm Society, the Cardiac Electrophysiology Society, and the Pediatric & Congenital Electrophysiology Society, published by Elsevier, emphasize that fluoropolymers, a specific class of PFAS, are not considered environmental contaminants and are indispensable for use in medical devices. Experts call for a balanced approach to protect both the environment and availability of essential medical technologies.