Breakthrough in metamaterial electromagnetic response: Debye relaxation mechanism
Peer-Reviewed Publication
Updates every hour. Last Updated: 4-May-2025 08:09 ET (4-May-2025 12:09 GMT/UTC)
The electromagnetic responses of metamaterial microstructural units are typically described using classical polarization theory models from dielectric physics, such as the Lorentz and Drude models. However, there has been a notable absence of the Debye model, which holds significant importance in dielectric physics. Chinese scientists have now successfully uncovered a novel broadband electromagnetic response mechanism in metamaterial microstructures based on polarization theory - Debye relaxation.
Kenneth Merz, PhD, of Cleveland Clinic's Center for Computational Life Sciences, and his team are testing quantum computing’s abilities in chemistry through integrating machine learning and quantum circuits.
Chemistry is one of the areas where quantum computing shows the most potential because of the technology’s ability to predict an unlimited number of possible outcomes. To determine quantum computing's ability to perform complex chemical calculations, Dr. Merz and Hongni Jin, PhD, decided to test its ability to simulate proton affinity, a fundamental chemical process that is critical to life.
Dr. Merz and Dr. Jin focused on using machine learning applications on quantum hardware. This is a critical advantage over other quantum research which relies on simulators to mimic a quantum computer’s abilities. In this study, published in the Journal of Chemical Theory and Computation, the team was able to demonstrate the capabilities of quantum machine learning by creating a model that was able to predict proton affinity more accurately than classical computing.