A novel quantum search algorithm for continuous domains
Peer-Reviewed Publication
Updates every hour. Last Updated: 22-Aug-2025 05:11 ET (22-Aug-2025 09:11 GMT/UTC)
Researchers at the University of Electronic Science and Technology of China have developed a novel quantum algorithm that extends Grover's quadratic speedup to continuous search problems, including optimization and spectral analysis over infinite-dimensional spaces. The team rigorously proved the algorithm's optimality by establishing a matching lower bound on query complexity. They also proposed a general framework for constructing the required quantum oracle, enhancing adaptability to diverse applications.
5-Methylcytosine (5mC) is a crucial epigenetic modification which plays a significant role in the regulation of gene expression. Accurate and quantitative detection of 5mC at single-base resolution is essential for understanding its epigenetic functions within genomes. Now, in the journal SCIENCE CHINA Life Sciences, a team of researchers from Wuhan university China posits a study. In this study, a novel Naegleria TET-assisted deaminase sequencing (NTD-seq) method for the base-resolution and quantitative detection of 5mC in genomic DNA was developed. The technology could become valuable tools in both academic research and clinical diagnostics for studying epigenetic modifications.
A research team from Shaanxi Normal University developed a novel catalyst that transforms glycerol waste from bio-diesel production into high-value glyceric acid with remarkable 96.6% selectivity. The innovative Pt-Bi2O3 nanosheet catalyst achieves superior performance through a unique synergistic effect: bismuth oxide modifies platinum's electronic structure while controlling glycerol's adsorption orientation. This green upgrade path not only addresses industrial waste challenges but offers a sustainable route to valuable chemicals. The catalyst also shows promising versatility for converting other polyols, opening doors for broader industrial applications.
Researchers developed a dual-strategy combining single-atom cobalt doping with high-current formation cycling to enhance Hard carbon anodes for sodium-ion battery. The approach significantly improves ion transport and forms stable, inorganic-rich SEI films, delivering excellent fast-charging and long-life performance.
A recent study published in National Science Review has revealed a previously unknown separated two-phase structure in lithium-manganese-rich cathodes, a breakthrough that could revolutionize the design of high-performance batteries. The discovery allows researchers to precisely manipulate the internal structure of cathodes, offering new opportunities for developing batteries with significantly higher energy density.
Researchers found a clear way to show that for some puzzle-like problems there is no shortcut and you must check every possibility, helping set realistic expectations for advances in areas like security and AI.