The era of human-guided epoxide selection in CO₂ cycloadditions is over—AI tools now take the lead
Peer-Reviewed Publication
Updates every hour. Last Updated: 19-Jun-2025 06:10 ET (19-Jun-2025 10:10 GMT/UTC)
Magnetization components perpendicular to an applied electric field can be reversed efficiently in multiferroic materials, as reported by researchers from Institute of Science Tokyo. This challenges their previous finding that the electric field and magnetization reversal must align. Using BiFe0.9Co0.1O3 thin films with a specific crystallographic orientation, they demonstrated that a parallel electric field can induce perpendicular magnetization reversal, enabling more flexible designs of energy-efficient magnetic memory devices.
A research study led by Oxford University has developed a powerful new technique for finding the next generation of materials needed for large-scale, fault-tolerant quantum computing. This could end a decades-long search for inexpensive materials that can host unique quantum particles, ultimately facilitating mass production of quantum computers. The results have been published today (29 May) in the journal Science.