Burning lactic acid: A road to revitalizing antitumor immunity
Higher Education PressPeer-Reviewed Publication
Lactic acid (LA) has transitioned from being perceived as a mere glycolytic waste product to a pivotal regulator of tumor–immune crosstalk. Historical milestones—from Scheele’s 1780 isolation from sour milk to Zhao’s 2019 discovery of histone lactylation—reveal an expanding biochemical repertoire that now encompasses pH control, G-protein-coupled receptor (GPR81/132) signaling, post-translational modification via lysine lactylation, and multi-directional metabolic shuttling between cytoplasm, mitochondria, and neighboring cells. Within the tumor microenvironment (TME), high glycolytic flux exports lactate and protons through monocarboxylate transporter 4 (MCT4), acidifying the extracellular milieu to ~6.5–6.8. This acidity degrades extracellular matrix, blunts drug uptake, and, via protonation, neutralizes weak-base chemotherapeutics. Cancer cells exploit the same molecule as fuel: MCT1-mediated uptake drives tricarboxylic acid cycle oxidation, NADPH generation via IDH1, and lactylation of DNA-repair proteins NBS1 and MRE11, enhancing genomic stability and chemoresistance. Concurrently, GPR81-cAMP-PKA-TAZ/TEAD signaling elevates PD-L1 expression, facilitating immune escape.
- Journal
- Frontiers of Medicine