KAIST develops AI technology that predicts and assembles cell drug responses like lego blocks
Peer-Reviewed Publication
Updates every hour. Last Updated: 16-Oct-2025 16:11 ET (16-Oct-2025 20:11 GMT/UTC)
Imagine using one laser beam to 'write' instructions into a material and another to 'bend' it into a complex, functional shape—all on the spot, without moving a thing. Researchers at the University of Science and Technology of China (USTC) have turned this concept into reality, developing a novel dual-laser method that creates adaptive, shape-locking devices in situ.
In the International Journal of Extreme Manufacturing, A novel conductive hydrogel, termed AirCell Hydrogel and developed by Tianjin University researchers, exhibits an ultra-high sensitivity of 18.9. Its smooth surface enables conformal adhesion that effectively suppresses motion artifacts, while its porous interior structure lowers the Young's modulus during deformation tracking.
POSTECH-UCLA Collaborative Team Develops Novel ‘Univody’ Platform for Antigen-Independent Cancer Immunotherapy.
A new review in International Journal of Extreme Manufacturing highlights the rapid progress in turning metallic materials into flexible electrodes (FEs) and, ultimately, soft epidermal electrodes (SEEs). Unlike the rigid metal pads traditionally used in medical monitoring, SEEs are engineered to mimic the softness and stretchability of skin itself. They conform like a second layer of tissue, remaining comfortable even during long wear and delivering stable, high-quality signals.